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We approach the problem of the complex dynamics of coupled map lattices 
(CML) by proposing a reduction to deterministic cellular automata (CA) with 
more than two states per site. The reduction scheme replaces the local map by 
an approximation in terms of a step function based on a straightforward 
analysis of the local dynamics. The variation of the spatial coupling in the CML 
then translates itself as a path in the spaces of rules for the equivalent deter- 
ministic CA. The transition to turbulence via spatiotemporal intermittency in 
the CML is then interpreted as a transition in the space of rules. The observed 
nonuniversality of this transition can be traced back to the nature of the rules 
involved on both sides of the transition region and to the character of the escape 
process from the turbulent state, either strongly deterministic or 
quasiprobabilistic. The relation between CML, deterministic, and probabilistic 
CA and the possibility of a mean-field treatment of the dynamics of CML are 
discussed at a more formal level. 

KEY WORDS: Coupled map lattices; cellular automata; spatiotemporal 
intermittency. 

1. I N T R O D U C T I O N  

I n  t he  c u r r e n t  l i t e r a t u r e  o n  t he  d y n a m i c s  of  e x t e n d e d  sys t ems ,  s t u d i e s  o n  

c o u p l e d  m a p  l a t t i ces  ( C M L s )  o c c u p y  a n  i m p o r t a n t  p l a c e  (see,  e.g., refs. 1). 

T h e s e  s y s t e m s  c o n s i s t  of  i t e r a t i v e  m a p s  ( u s u a l l y  o f  o n e  rea l  v a r i a b l e )  

c o u p l e d  t o g e t h e r  o n  a loca l  n e i g h b o r h o o d  ~,. a t  n o d e s  i of  a r e g u l a r  l a t t i ce :  
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where the superscripts denote the time and the subscripts the spatial posi- 
tion of the sites, the Wj factors being the coupling weights and f the local 
map. 2 

Their interest mainly stems from the need for extensive exploratory 
numerical investigations of systems with many (spatial) degrees of freedom, 
for which an efficient formalism is still lacking. Indeed, with both space and 
time discrete but a local phase space which remains continuous, they offer 
valuable intermediate models between fully continuous nonlinear partial 
differential equations describing most physical situations and cellular 
automata (CAs) for which space, time, and the local phase space are all 
discrete. In particular, an obstacle to the modeling of concrete physical 
problems in terms of CAs, the "simplest" conceivable complex systems, lies 
in the absence of continuous control parameters, hindering, for example, 
the study of important phenomena such as the transition to disorder, 
which can be overcome in CMLs by varying the weight factors or the 
shape of the local map. 

Qualitative studies (2"3~ have shown that CMLs may exhibit spatiotem- 
poral patterns very much reminiscent of those which are the landmark of 
GAs, (4) even though they seem intrinsically different from the fully discrete 
models. In this respect, the representation of spatiotemporal intermitteney 
characterized by the sustained coexistence, in space and time, of slowly 
evolving regular and disordered patches (for an introduction see ref. 5; see 
also ref. 2) is particularly impressive. This specific turbulent regime has 
been shown to occur not only in CMLs, but also in partial differential 
equations (6) and in laboratory experiments/y) In a seminal conjecture, 
Pomeau (s) has suggested to set this specific kind of transition from a com- 
pletely regular state to spatiotemporal intermittency within the framework 
of the statistical mechanical description of critical phenomena, and to 
understand the contaminative spreading of the turbulent state as equivalent 
to a directed percolation process (see ref. 9 for a review article on directed 
percolation). 

Studies developed further to check this conjecture have shown that 
concepts from the theory of phase transitions and critical phenomena were 
indeed relevant, but that the exact nature of the transition (continuous or 
discontinuous) could change with the detailed structure of the CML. (1~ 
Moreover, in the case of continuous transitions, critical exponents were 
seen to depend on the shape of the local map, (m so that CMLs could not 
belong stricto sensu to the universality class of directed percolation as 
initially conjectured. It was therefore tempting to attack the problem posed 
by this lack of universality by considering coupled map lattices as cellular 

z This formulation is equivalent to the usual one: YT+ 1 =  ~ j e  ~'~ wjU(Y~). 
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automata, shifting the debate to the (hopefully) clearer field of fully discrete 
systems, and trying to understand the apparently strong similarities 
between these two types of systems at a more formal level. Here, we present 
first a simple and systematic scheme to construct a deterministic cellular 
automaton (DCA) approximation of a given CML, using the minimal 
model introduced previously (m as an example. The properties of the 
obtained DCAs are then discussed from the point of view of the reliability 
of the approximation and, at a more general level, of the formal relation 
between CMLs and deterministic and probabilistic CAs. The phase trans- 
itions of these systems, the existence of universality classes, and the 
possibility of a mean-field theory are also considered. 

2. D E T E R M I N I S T I C  C E L L U L A R  A U T O M A T A  A P P R O X I M A T I O N  

The minimal map f chosen to analyze spatiotemporal intermittency 
was constructed to meet the need of both chaotic transients and a simple 
linearly stable asymptotic state (e.g., a stable fixed point) possibly unstable 
to the finite-amplitude perturbations introduced by the coupling. It is 
piecewise linear and composed of a chaotic repellor (a tent map) connected 
to a simple attractor (Fig. la). It reads 

f (X)  = rX if Xe  [0, 1/2] 

f ( X ) = r ( 1 - X )  if X~ [1/2, 1] (2) 

f ( X ) = k ( X - X * ) + X *  if X >  1 

with X* = (r + 2)/4, [k[ ~< 1, and r > 2. 
In one space dimension, with nearest neighbor diffusive coupling, the 

CML itself can be specified by introducing the weights Wi = 1 -  e and 
W~j=i+l)=e/2, where e is the coupling strength. This ensures that the 
laminar state (X> 1) is an absorbing state, i.e., that disorder cannot emerge 
spontaneously from a cluster of "laminar" sites and that the spreading of 
the turbulent state (X<  1) is a contaminative process. Starting from dis- 
ordered initial conditions, in the infinite-size limit, there exists a precise 
threshold value ec of the coupling below which the system falls into the 
homogeneous laminar phase and above which sustained regimes of 
spatiotemporal intermittency are observed and characterized by stationary 
statistical properties. 

The key remark for constructing deterministic cellular automata 
equivalent to continuous systems is to define CMLs with step functions as 
local maps (this was incidentally used by Oono and Kohmoto(n)). There- 
fore, we consider the following reduction of the system defined by (1) with 
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Fig. 1. (a) The elementary map f of which the minimal CML is built. On this figure, r = 3, 
k = 1. Also shown are functions derived from the elementary map f with which the DCAs 
approximating the minimal CML are built (b)at  order p = 1 (function)vl) and (c)at  order 
p = 2 (funct ion j72). 

f given by (2) in one space dimension, i.e., with weights quoted above, by 
choosing an approximation to f in terms of a step function )v taking k 
possible values sl ,  s2,..., s~: jT(y)E {sl,  s2,..., s~). 

The dynamics of f itself is very simple: if X is in the laminar region 
( X >  1) it remains in it, otherwise it can escape the turbulent region ( X <  1) 
through the "hole" in the unit interval delimited by the open interval 
] l / r ,  1 - 1 / r [ .  This interval Ia is one of the preimage under f of the laminar 
region I o = ]1, r / 2 ] ,  the other being I o itself: 

f - 1 ( I o )  = ]1, r / 2 ]  ~ ] l / r ,  1 --  l / r [  = Io u Ia 
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Let J1 be the complementary set of I~ in the unit interval: 

Jl  = FO, l/r] vo [ 1 -  I/r, 1] = [0, 1 ] - 1 1  = [0, r /2]-  (I owl  1) 

The above crude description o f  the dynamics of f is then equivalent to 
approximating f by the step function J~l defined by (Fig. lb)  

f l (X)  = X* if Xe(IowI1) 

71(X) = 1/2 if X ~ J  1 

This procedure can be easily refined in the following manner: let 12 be 
the preimage under f of 11 and let J2 be its complement in Jl: 

I2=f l(I1) 

J 2  = J 1  - 12 = [ -0 ,  r/2 ] - (Io w I 1 w 12) 

Then, )72 will be the step function defined by taking the values by f of all 
the middle points of the subintervals delimited by the partition (I0, 11, 12) 
of the invariant interval [0, r/2] (Fig. lc). The function j72 defines a 
"better" approximation of f ,  which is derived from j7 z and based on the 
dynamics of f in a natural manner. It can be generalized at order p by 
defining the interval 

Ip=f l(Ip_ 1) 
p 

Jp=Jp 1- Ip=[O,r /2] -  U Iq 
q = 0  

and building a step function ~Tp taking the values under f of all the middle 
points of the subintervals of [-0, r/2] defined this way {iterated to infinity, 
this procedure constructs a Cantor set l imp_~ Jp of fractal dimension 
df(r)=log 2/log[r/(r-2)] on the unit interval, which, for r =  3, is the 
well-known triadic Cantor set~ 

At order p, fP is taking kp--2 p values and the minimal CML is then 
approximated by a kp-state DCA. For every value of the coupling e, this 

three-site DCA is governed by a particular rule among the kk~ available at p 

order p of the approximation. However, this number is reduced in fact to 
the number of legal rules114): 

JK(p) = kk~% + 1)/2 - 1 
P 

since the left/right symmetry of the coupling is preserved and the X =  X* 
state is an invariant state of the all the fp step functions [)Tp(X *) = X*],  
and hence an absorbing state of the equivalent DCAs. This is in fact the 
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translation under the approximation of the absorbing character of the 
laminar state (X> 1) in the original minimal CML. 

Coming back now to the original problem, namely the transition to 
spatiotemporal intermittency in this minimal CML, we easily see that when 
e is varied from, say, 0 to 1, the equivalent DCA changes its rule for par- 
ticular threshold values of e, describing a path in the set of the JV(p) 
possible rules at order p of the approximation. The next section takes a 
closer look at this path and the dynamics of the associated DCAs along it 
in order to evaluate the approximation, beginning with the lowest orders. 

3. RESULTS 

3.1. Approximation at Order p = l  

At the lowest order, p =  1, the approximated DCA is a two-state, 
three-site, legal rule automaton. It is well known that there are only 
X ( 1 ) =  32 such rules. Therefore, the equivalent rule at a given ~ is easily 
determined analytically by considering simply the outcome of each of the 
five possible local configurations (taking into account the left/right sym- 
metry and the absorbing state). The step function j7 takes two values, 
sl =J(*  and s2 = 1/2 (Fig. lb). Since the first one is an absorbing state 
of the automaton, it is identified with the usual "0" (dead) state in the 
conventional representation, while the other is the "1" state. 

The complete analytical results for 2 ~ r ~< 3 (the r values of main 
interest) are given in Table I. Among the 32 possible rules, only 7 are 
"visited" when e is varied from 0 to 1 (except for r = 3, where rule 94 disap- 
pears). This sequence is nevertheless reminiscent of the actual dynamics of 
the original CML: there exists a threshold value ec = 2 -  4/r below which 
the reconstructed automaton is governed by a "trivial" rule (class 1 or 2) 
and above which the rules are "complex" (class 3).(14) This mimics, already 
with such a crude approximation, the existence of a threshold for observing 
sustained spatiotemporal intermittency in the CML. Indeed, in this 

Table I. Equivalent Rules for the Determinist ic Cellular A u t o m a t a  
Approximat ing the Minimal  Coupled Map Lattice at Order p = l  

When the Coupling E is Varied between 0 and 1 ~ 

0 2 / r  - -  4 / r  z 1 - -  2 / r  4 / r  - 8 / r  2 2 - -  4 / r  2 / r  1 - -  2 / r  + 4 / r  z 1 

Rule 32 36 4 76 94 90 122 
Dynamics Trivial (class 1 and 2) Complex (class 3) 

a Results valid for 2 ~< r ~< 3 only. 
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context, the familiar patterns developed by class 3 rules (~5~ are very similar 
to those exhibited by the CML above the spatiotemporal intermittency 
threshold (Fig. 2b). 

3.2. A p p r o x i m a t i o n  at H igher  Orders 

Considering the approximation at order p > 1, analytical evaluation of 
the equivalent rules when e is varied becomes rapidly an immense task. 
Indeed, since the number of states of the DCA is kp = 2 p at order p, the 
number of local configurations one has to look at on a three-site 
neighborhood quickly diverges with p, as seen from the number Y ( p )  of 
legal rules [JV'(2) = 4 39 ~ 1 0 2 7 ! ] .  

In the same manner, the number of threshold values of e delimiting the 
intervals over which the CML is approximated by the same rule increases 
very fast, roughly like the number of points forming the (uncomplete) 
Cantor set on which jTp is defined. Therefore, it is not of great interest 
to specify exactly the equivalent rules, all the more since we are mostly 
interested in the general qualitative features of the path defined in the set 
of possible rules by the approximation when e is varied. 

Thus, we turned to numerical simulations of the DCAs approximating 
the original CML at various orders and mainly for two values of r, r = 3 
and r = 2.1. The transition to spatiotemporal intermittency for the minimal 
CML has been studied extensively for these values. (11) The corresponding 
spatiotemporal representations showed very different patterns, the r = 3  
case being characterized by the propagating structures and triangular 
clusters of Figs. 2a and 2b, while for r = 2.1 the laminar clusters have no 
well-defined underlying shape, as is the case for directed percolation. These 
qualitative differences are accompanied by a quantitative discrepancy in the 
measured critical exponents when the transition is continuous. 

In order to get a meaningful spatiotemporal representation of the 
DCAs at high orders of the approximation, we used the fact that one state 
among the kp ~-2 p possible states at order p is absorbing, as argued above. 
As for the CML, a binary reduction of the spatiotemporal information was 
performed, distinguishing the absorbing state X =  X* from all the other 
states. 

The behavior of the DCA when e is varied also shows an important 
difference between the r = 3 and the r = 2.1 cases for p > 2. 

For  r = 3, the general picture drawn for the p = t case holds at higher 
orders of approximation. There exists a threshold ec of the coupling 
separating "trivial" rules (class 1 or 2) from complex ones (class 3 or4) .  
For  e < ~c, the behavior of the automaton is simple (frozen spatial structure 
and stationary or periodic temporal evolution), while it is spatiotemporally 
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i n t e r m i t t e n t  ( p r o p a g a t i n g  s t ruc tures ,  t r i a n g u l a r  e m b e d d i n g s )  for e > e c .  

F i g u r e s  2 c - 2 e  s h o w  the  m a i n  fea tures  of  the  p = 3, r = 3 case. N o t e  t h a t  the  

p r o p a g a t i n g  s t ruc tu res  (Fig.  2d),  p r o b a b l y  c o r r e s p o n d i n g  to  class 4 rules,  

a p p e a r  for  e va lues  a r o u n d  the  th resho ld ,  as o b s e r v e d  for the  o r ig ina l  

C M L .  (16) M o r e o v e r ,  the  t h r e s h o l d  ec is in c lose r  q u a n t i t a t i v e  a g r e e m e n t  
_ C M L  with  the  m e a s u r e d  va lue  for  the  C M L ,  ~c ~-0.360,  w h e n  p is i nc reased  

( T a b l e  II) .  

(a) (b) 
Fig. 2. Spatiotemporal representation of the behavior of the minimal CML for r = 3 and 
k = 1 and its DCA approximation at order p = 3. Sites in the laminar (absorbing) state are in 
black, time is ,running upward, the lattice size is N = 200 sites, and the boundary conditions 
are periodic. The evolution is shown during 400 iterations following random initial conditions 
and a long transient period. (a)CML at the spatiotemporal intermittency threshold, e = 0.360; 
(b) CML above threshold, s =0.400; (c)a class 2 DCA rule occurring at s =0.40; (d)a com- 
plex DCA rule with propagating structures (class 4?) occurring at a = 0.43 (threshold region), 
(e) a class 3 DCA rule occurring above threshold (~ = 0.55). 
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(c) (d) 
Fig. 2 (continued) 

For r = 2.1, the general scenario is also respected, although less clearly. 
The transition is not so well marked, since only class 1 or class 2 rules are 
observed. Nevertheless, this does not ruin the validity of the approxima- 
tion. On the contrary, it emphasizes the fact that no particular structure 
was observed in the spatiotemporal regimes of the CML for this value of 
r. Being closer to its crisis point, the local map f is better seen as a 
Poisson-type random generator for the escape time from the turbulent 
state (X< 1). The approximation procedure leads to step functions )Tp 
which remain very close to f itself so that the emerging discrete dynamics 
keeps a trace of this property. We will come back later to this point when 
discussing the origin of the nonuniversality of the transition, but we can 
already emphasize the satisfactory qualitative agreement between the CML 
and the DCAs derived from the approximation. 
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(e) 

Fig. 2 (continued) 

Table I1. Threshold Values of  the  Coupl ing Separat ing  
Tr iv ia l  and Complex  Behav ior  for  the  DCA 

A p p r o x i m a t i n g  the  M in ima l  CML  at  r = 3  at D i f fe ren t  
Orders p of  t he  A p p r o x i m a t i o n  a 

p 1 2 3 ~>4 

ec 2/3 0.47 0.43 0.36 

a The th resho ld  for the or ig ina l  C M L  is e cML ~- 0.360. 
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4. D I S C U S S I O N  

4.1. The Transi t ion to Disorder V iewed  As a Path in the 
Space of Rules 

The approximation procedure casts the problem of the transition to 
spatiotemporal intermittency in the minimal CML into a finite set of DCAs 
whose cardinal Y ( p )  is rapidly increasing with p, the order of the 
approximation. When e is varied, the system no longer describes a (for- 
mally) continuous path in the space of CMLs, but a discrete sequence of 
rules which nevertheless keeps track of the main characteristics of the con- 
tinuous case. In a certain manner, this sequence defines an order in the 
a pr ior i  structureless set of possible rules at given p. "Consecutive" rules 
may be thought of as "closer" to each other than arbitrarily chosen ones. 
This stems not only from the fact that the Hamming distance between two 
such rules is minimal (this distance is simply the number of local configura- 
tions whose output is different under the two rules; understandably, a small 
shift of e across the threshold value separating the two rules does not 
change the output of most configurations), but also from a proximity 
deeply related to the dynamics of the underlying problem. 

At lowest order ( p =  1), the set of possible rules is fairly small 
[ Y ( 1 )  = 32] and the relative Hamming distance between two consecutive 
rules rather large (of order 1/32). For higher values of p, this relative 
distance becomes very small [of order 1 /Y(p ) ]  and the coarseness of the 
path of rules defined by the approximation progressively vanishes. From 
this point of view, at a formal level, even the original CML may be con- 
sidered to be a DCA with a (huge) finite number of states per site when 
implemented on a digital computer. Indeed, already for p not too large, the 
length of the smallest intervals defined in [0, 1 ] by the approximation may 
be of the order of the precision of the computer on which the system is 
simulated. We can thus see the path of rules defined at every order, and 
also by the CML itself, as a line crossing some "critical surface" in the set 
of possible rules. This critical surface separates rules associated with 
complex spatiotemporal behavior from those yielding trivial dynamics. At 
low orders of the approximation, i.e., for DCAs with a small number of 
possible states per site, there may be eventually no rule lying on or near 
this surface, so that no "critical behavior" may be observed for a single 
rule. At higher orders, on the contrary, rules may exist which are 
sufficiently close to this surface so as to exhibit critical properties, as 
suggested by the results of the simulations of the CML itself. 
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4.2. From Deterministic to Probabilistic Cellular Automata 

This approach may also be fruitful in understanding probabilistic 
cellular automata (PCAs), for which the output of some local configura- 
tions is governed by a random process. Directed percolation is one such 
system usually derived from purely probabilistic concerns. (9) However, as 
every other PCA, it can be viewed as a probabilized DCA, or, equivalently, 
as a system defined by a "randomization" between two different DCA rules 
(see ref. 17 for an example). According to the general picture described 
above, these two deterministic rules between which a PCA is defined may 
be thought of as lying on each side of the critical surface in the case where 
the corresponding PCA indeed shows a phase transition between complex 
and trivial behavior (usually the case of interest). The randomization 
process gives relative weights to the two underlying deterministic rules with 
the help of a (set of) continuous control parameters(s) and the transition 
threshold corresponds to a critical value of this parameter. We can then 
think of a PCA as an automaton whose "effective rule" lies somewhere 
between the two underlying deterministic rules which define it. The critical 
value of the control parameter would then correspond to this effective rule 
lying exactly on the critical surface, even though there is possibly no actual 
deterministic rule on this surface if the number of states per site is too 
small. 

4.3. On the Origin of Nonuniversality 

Returning to the approximation described in this work, one can 
indeed construct PCAs showing critical behavior by probabilizing, at a 
given order p, between the two deterministic rules lying across the 
threshold between complex and trivial dynamics (between rules 94 and 
90 for p =  1)J 18) In this respect, the r = 3  and r=2 .1  cases at higher p 
discussed above also appear very different from each other: 

1. For  r = 3, typical turbulent transients in the local map f remain 
short; the origin of complex spatiotemporal behavior cannot derive from a 
local stochastic process, but, on the contrary, from a quasideterministic 
process translated under the approximation as an interplay between class 1 
or 2 rules and complex rules of class 3 or 4, indispensable for sustaining 
disorder. 

2. For  r - -  2.1, as argued above, the origin of disorder is rather rooted 
in the mixing nature of the local dynamics; accordingly, complex 
spatiotemporal behavior can possibly result from a probabilization 
between rules of class 1 or 2 only, as in directed percolation, which may be 
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thought of as being defined between class 1 rules 0 and 254 (on a square 
lattice). 

This important difference is, we believe, at the origin of the nonuniver- 
sality observed for the CML, including the discrepancies with directed per- 
colation. It is strengthened by recent results on a specific two-state PCA 
with one absorbing state, which was shown to possess critical properties at 
odds with those of directed percolation, (~9) contrary to the widespread 
belief that such automata should all be in the same universality class. (2~ 
Indeed, this system is a PCA defined between a class 3 and a class 1 rule, 
as the r = 3 case in this work. At a more general level, the minimal CML 
can be seen as an automaton with more than two states per site. These 
automata are not in the universality class of directed percolation, so that 
there is no a priori reason to find the same critical exponents for both 
systems. 

4.4, Steps for  a M e a n - F i e l d  A p p r o a c h  of C M L s  

Finally, the above discussion also suggests a (formal) approach to a 
mean-field analysis of CMLs. The kp-state DCA approximating the mini- 
mal CML at order p can be reduced to a two-state probabilistic automaton 
by a binary reduction of the type introduced above for the spatiotemporal 
representations of the dynamics. Such a reduction indeed involves a 
probabilization of the output of the local configurations, then limited to 
five (on a three-site neighborhood, with the ordinary restrictions of 
legality). Mean-field analysis of such automata is straightforward (19'21) and 
usually approximates the system by an iterative map for the global concen- 
tration of active sites (not in the absorbing state). Therefore, the observa- 
tion of a' collective dynamics very similar to that of a single map when per- 
forming an "experimental" mean-field treatment (for example, by coupling 
each site to a large number of "neighbors" chosen at random) on the CML 
should not be too surprisingJ 22/ 

4.5. Conclus ion 

The proposed procedure to approximate CMLs by DCAs with a small 
number of possible states per site is very faithful in reproducing most 
qualitative features of the problem of the transition to spatiotemporal inter- 
mittency. It can also be easily extended to higher space dimensions and 
larger local neighborhoods. 

More importantly, it gives hints at explaining the nonuniversality of 
the transition observed for the minimal CML in relating it to the under- 
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lying presence of DCA rules of different classes, an explanation believed to 
be also valid for recent results on PCAs which also showed nonuniversal 
behavior (19) (such classes may also have to be subdivided in this respect3). 

At a more formal level, the procedure suggests redefining the mutual 
status of CMLs, DCAs, and PCAs, clarifying the respective role of deter- 
minism and continuous character as opposed to randomness and discrete- 
ness for extended systems. 

3 Results presented in ref. 23 suggest that class 3 rules may have very different properties from 
the point of view of the various measures of complexity. 
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